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Bayesian Calibration of Blue Crab (Callinectes
sapidus) Abundance Indices Based on

Probability Surveys
Dong Liang, Genevieve Nesslage, Michael Wilberg, and

ThomasMiller

Abundance and standard error estimates in surveys of fishery resources typically
employ classical design-based approaches, ignoring the influences of non-design fac-
tors such as varying catchability. We developed a Bayesian approach for estimating
abundance and associated errors in a fishery survey by incorporating sampling and non-
sampling variabilities. First, a zero-inflated spatial model was used to quantify variance
components due to non-sampling factors; second, themodelwas used to calibrate the esti-
mated abundance index and its variance using pseudo empirical likelihood. The approach
was applied to a winter dredge survey conducted to estimate the abundance of blue crabs
(Callinectes sapidus) in the Chesapeake Bay. We explored the properties of the calibra-
tion estimators through a limited simulation study. The variance estimator calibrated on
posterior sample performed well, and the mean estimator had comparable performance
to design-based approach with slightly higher bias and lower (about 15% reduction)
mean squared error. The results suggest that application of this approach can improve
estimation of abundance indices using data from design-based fishery surveys.

Key Words: Auxiliary information; Empirical likelihood; Integrated Nested Laplace
Approximation (INLA);Model-assisted approach; Survey design; Index standardization;
Variance estimation.

1. INTRODUCTION

Fisheries managers commonly make resource decisions by comparing estimates of cur-
rent population abundance to reference levels. Consequently, the accuracy of estimated
abundance is an important consideration for managers in interpreting changes in population
size (Chen et al. 2004;Wagner et al. 2007). Scientific surveys that collect data independently
of the fishery itself, termed fishery-independent surveys, are the preferred basis for manage-
ment. Kimura and Somerton (2006) provide an introduction to the large statistical literature
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on fishery surveys that has been developed. On occasion estimates of abundance derived
directly from data collected during the commercial or recreational fishery, and thus termed
fishery-dependent, must be used. However, such estimates often perform poorly (Maunder
and Punt 2004). In both fishery-independent and fishery-dependent approaches, the catch
per unit of effort (CPUE) in the survey serves as an index of abundance (Chen et al. 2004;
Kimura and Somerton 2006).

Fishery-independent surveys rely on an underlying design, often a stratified random sam-
ple (Kimura and Somerton 2006). Two approaches have been used to estimate abundance
from the survey data: design-based andmodel-based estimates, sometimeswith standardiza-
tion for covariates (Särndal et al. 1978; Smith 1990). The classical design-based approach
has several advantages in deriving unbiased estimates, especially for routine analyses of
many variables (Opsomer et al. 2007). Although design-based estimates of the fishery-
independent surveys may represent the “best scientific information available” regarding
population status, the design-based standard error only accounts for the uncertainty due
to probability-based sampling design. Even with rigorous survey designs and the use of
standardized gear in fishery-independent surveys, non-design factors may have substantial
impacts on estimates. One example of a non-design factor known to have a substantial
impact on abundance estimates is survey catchability, the proportionality constant between
an index of abundance and population size (Kimura and Somerton 2006; Wilberg et al.
2010) .

When non-sampling factors are important, amodel-assisted framework allows estimation
of variance components due to non-sampling factors such as the catching process, sighta-
bility (Fieberg et al. 2013), and environmental conditions (Valliant et al. 2000; Chen et al.
2004). There are many potential statistical frameworks for model-assisted approaches. The
pseudo-empirical likelihood (EL) approach has received substantial interest in analyzing
survey data (Chen and Sitter 1999; Chen et al. 2004). The EL estimator is model unbiased
under informative survey designs (Pfeffermann et al. 1998; Pfeffermann 2007; Savitsky and
Toth 2016) and its robustness to model misspecification under mild regularity conditions
makes it naturally suitable for incorporating auxiliary information (Wu and Sitter 2001). For
spatially intensive surveys, the geographic information collected as a part of the survey may
provide valuable information regarding the species’ distributionwithin the sampling domain
(Jensen and Miller 2005 and references therein). The contribution of spatial information to
EL-based abundance estimation has not been explored (Brus and DeGruijter 1993).

Bayesian approaches using Markov chain Monte Carlo (MCMC) samples are well-
positioned to estimate variance components due to non-sampling factors. The stochastic
partial differential equation approach (Lindgren et al. 2011) can be used to incorporate
geospatial information in the inferential framework when combined with the integrated
nested Laplace approximation (INLA, Rue et al. 2009) to generate approximate samples
from a posterior distribution. The INLA approach is particularly attractive for larger spa-
tial data analyses where conventional MCMC algorithms require computationally intensive
matrix operations (Banerjee et al. 2014). Using INLA, the total variance in the data can be
used in the estimation of the variance components.

Our objectives were to develop a modeling framework to estimate an index of abundance
and associated variance estimates from CPUE data collected in a fishery survey. We evalu-
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Figure 1. Winter dredge survey area, Chesapeake Bay, United States: a A typical distribution of sample locations
during winter 1997/1998. b Strata design used in the survey since 1994. Stratum 1- Upper Bay and rivers, Stratum
2- Middle Bay, Stratum 3 - Lower Virginia Bay. c Subarea used in simulation study.

ated a semi-continuous, or zero-inflated (Liu et al. 2011; Thorson and Ward 2013) spatial
model that relates expected CPUE to auxiliary information based on design variables and
geographic locations. Also, we conducted a limited simulation study to investigate the per-
formance of the proposed estimators, using a synthetic population based on the survey data.
We applied our techniques to survey data for an exploited marine crustacean, the blue crab
(Callinectes sapidus) in the Chesapeake Bay, U.S. (Sharov et al. 2003; Fig. 1a). Although
we used a blue crab survey in this example, our approach is readily applicable for estimating
abundances and associated variances for other design-based and spatially explicit surveys
of aquatic and marine populations.

2. MATERIALS AND METHODS

In Sect. 1, we define a crab abundance index based on CPUE. In Sects. 2 and 3, respec-
tively, we introduce amotivation data set and propose aworkingmodel for CPUE. In Sects. 4
and 5, respectively, we implement a Bayesian EL estimator for an index of abundance and
that for the associated variance estimator.

2.1. DEFINITION OF CRAB ABUNDANCE INDEX

Populations of exploited marine resources exhibit frequent and often substantial changes
in abundance due to migration, recruitment, and both natural and fishing mortality. These
processes challenge the conventional survey sampling framework, which assumes a closed
population and a static catch process (i.e., constant catchability). Thus, the estimated CPUE
reflects both the population status as well as the sampling or the catching process and
environmental conditions (Wilberg et al. 2010).

Given standard gear and a short time frame, we may assume CPUE is a smooth function
of the covariates x (including spatial location), which facilitates a spatially explicit modeling
approach (Jensen andMiller 2005). Following the notation ofChen et al. (2004), let R denote
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the study region andμ(x) the expected CPUE for location x. Theoretically, we can define the
abundance index as I (R) = ∫R μ(x)dx. For computation ease, if we let gi , i = 1, . . ., N ,
denote a tessellation of size N in domain R, we can define

I (R) =
∑

i≤N
μ (xi ) . (1)

In practice, we implement a sampling design p and observe Yi , the variable of interest
which in this case is CPUE, within n finite grids, assuming standard gear usage and regular
environmental conditions. Thus, we assume that

Eξ

(
Yi |xi

) = μ (xi ) , (2)

where ξ denotes the latent stochastic model that generates the observed data; ξ quantifies
the uncertainty due to the varying catchability. We wish to derive an estimator Î (R) that is
an unbiased estimator of I (R), i.e., Eξ Ep[ Î (R)] = I (R) (Smith 1990).

2.2. WINTER DREDGE SURVEY

A stratified random winter dredge survey (WDS) has been conducted for blue crab in
the Chesapeake Bay between December and March since the winter of 1989/1990 (Sharov
et al. 2003, henceforth, we refer to each survey by the year in which it was completed).
Between 900 and 1,500 stations (Fig. 1a) inwaters deeper than 1.5meters have been sampled
each year. Winter was selected for the survey because crabs are buried in the sediment and
largely dormant during this time of the year, and thus exhibit limitedmovement. This limited
movement and the short duration of the survey mean that the population can be considered
closed.

The sampling design has been consistent since 1994. Three fixed geographic strata have
been employed based on salinity (Sharov et al. 2003): (i) the upper Bay and rivers; (ii) the
middle Bay and (iii) the lower Bay (Fig 1b). The number of stations in each geographic
stratum has been proportional to stratum area. Thus, from a spatial viewpoint, the design is
equivalent to simple random sampling with replacement (SRSWr).

The response variable Yi , the CPUE of blue crab, was calculated as the number of blue
crab (>15 mm carapace width) divided by the area swept for each tow. At each station,
a 1.83-meter wide dredge was towed along the bottom at a speed of 3 knots, retaining
crabs greater than 15 mm in carapace width. The geographic coordinates at the beginning
and end of the dredge, projected to the UTM (zone 18N), were used to calculate the tow
distance and the area swept. We included the projected latitude and bottom depth at the
beginning of the dredge as numerical covariates, and stratum as a categorical covariate in
the model proposed in Sect. 2.3. The sampling date was not included as a covariate because
for logistical efficiency the locations were sampled sequentially; hence, the fixed effect of
sampling sequence is confounded with the spatial random effects. To minimize uncertainty
in tow length, only tows with dredge distance between 50 and 500m were included in the
analyses (Jensen and Miller 2005).
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For the purpose of predicting the expected CPUE, the entire survey area (9, 812 km2)

was rasterized into 20,770 cells, with coarser resolution of 1km in the main stem of the Bay,
250 m resolution in the mesohaline estuary, and <100m resolution in oligohaline creeks.
To calculate inclusion probability, we assumed the grid points were sampled via SRSWr.
The covariates (depth and stratum) are readily available for predictive inference from the
baywide bathymetry data and the definition of management segments over the Chesapeake
Bay (Chesapeake Bay Program 2016).

2.3. WORKING MODEL FOR CPUE

A two-stage, overdispersed, and zero-inflated model is commonly used to model fishery
survey data given the often large number of samples that catch no individuals of the target
species (Jensen and Miller 2005; Maunder and Punt 2004). CPUE Yi was assumed to arise
from a mixture of zero and positive catches. The chance of a nonzero catch was modeled
using the Bernoulli likelihood. Assuming a nonzero catch, CPUEwas modeled by a Poisson
likelihood truncated to positive values. Let η1 and η2 represent large scale effects captured
by covariates. The covariates used here were xi= (latitude at start of dredge i , bottom depth
at start of dredge i , categorical stratum indicator at dredge i). b(si ) represents the spatial
auto-correlation, where si denotes the geographic coordinates associated with i th data point.
Standard link functions were used to model the probability and expected positive CPUE

logit [P (Yi > 0)] = η1 (xi ) + b (si ) + εi (3)

log
[
μ∗ (xi )

] = η2 (xi ) + β1b (si ) + β2εi . (4)

We assumed that zero inflation resulted from spatiotemporal aggregation of blue crabs, and
hence applied the constraint of a monotonic relation between the linear predictors in (3) and
(4) (Liu et al. 2011; Thorson and Ward 2013). The εi error term represents overdispersion
through an unstructured Gaussian field. Both fields were centered on zero to allow estima-
tion of the fixed effects, η1 and η2. The difference in the logit and log scales was captured
by the β parameters.

The Gaussian field b was assumed stationary with an exponential covariance function,
partial sill σ 2, and practical range h. The covariance function, based on a Gaussian random
field, was approximated by the solution to the stochastic partial differential equation (Lind-
gren et al. 2011). This approach enables computationally efficient modeling of large data
(Lindgren and Rue 2015). The unstructured Gaussian field was assumed with variance τ 2,
which is similar to the nugget effect in classical geostatistical terminology (Cressie 1993).
The hyper-prior for the practical range h followed a lognormal distribution with a mean
equal to the natural logarithm of 20% of the study domain size and a precision of 0.1. The
square root of the partial sill σ followed a lognormal prior with mean 0 and precision 0.1,
which is a vague prior that covers most of the range of the spatial random effects with 95 %
prior probability. The nugget variance τ 2 followed an inverse gamma (0.01, 0.01) distribu-
tion. The parameters τ 2, h, and σ were a priori independent. We used the R-INLA package
(Lindgren and Rue 2015) for posterior inferences by generating approximate MCMC sam-
ples based on INLA (Rue et al. 2009). Convergence assessment was not performed due to the
approximate nature of the algorithm and the independent sampling from the approximation.
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Because the design was non-informative and self-weighting, we estimated the Bayesian
spatial model without using design weights.

2.4. MODEL-ASSISTED ESTIMATION USING INLA MODEL

Let yi denote the observedCPUE in the dredge at station i ,πi = Pr (i ∈ s) denote the first
order inclusion probability of grid i , and s denote the sample (Horvitz and Thompson 1952).
Let di = 1/πi , then ÎHT (R) = ∑

i∈s di yi is the classical Horvitz–Thompson estimator of
abundance index. The standard errors for ÎHT (R) were calculated using the usual large
sample approximation. The model calibration approach was proposed to make efficient
use of complete auxiliary information related to the response (Wu and Sitter 2001). The
INLA model was used as an approximation to ξ (Eq. 2) in the estimation stage of the fish
abundance index. Given the nonlinearity of the working model, the auxiliary information
should be incorporated through the fitted values denoted by ui = μ̂ (xi ) , i = 1, . . . , N
(Wu and Sitter 2001; Opsomer et al. 2007). The resulting model calibration estimator is∑

i∈s wi yi where the calibration weights wi minimized the Chi-square distance (Wu and
Sitter 2001) between wi and di , i = 1, . . . , N subject to

N−1
∑

i∈s wi = 1, and
∑

i∈s wi ui =
∑N

j=1
u j . (5)

The calibrated estimator is asymptotically design unbiased under mild regularity conditions
(Wu and Sitter 2001) including a continuous and bounded function of μ(x).

The resulting weights, however, can be negative and can theoretically generate a negative
estimate of abundance. The EL method (Chen and Sitter 1999; Chen et al. 2002, 2004) is
asymptotically similar to model calibration (Wu and Sitter 2001), but guarantees positive
weights. The EL method also has a clear maximum likelihood interpretation (Chen et al.
2004). In the EL framework, let l (p) denote the pseudo-empirical likelihood function where

l (p) =
∑

i∈s di log (pi ) . (6)

Let p̂i denote the maximizer of l (p) subject to the constraints
∑

i∈s pi = 1 (pi > 0) , and
∑

i∈s pi ui = 1

N

∑N

j=1
u j . (7)

The calibration weights are wi = N p̂i . The EL estimator has the same analytical design
variance formula (Wu and Sitter 2001). Hence, it can be viewed algebraically as a regression
estimator using ui as the auxiliary variable (Opsomer et al. 2007). Letw∗

i = di/
∑

i∈s di ,the
Lagrange multiplier method can be used to show that p̂i = w∗

i / (1 + λui ) for i = 1, . . ., n,
and the scalar Lagrange multiplier λ is the solution to

∑
i∈s

w∗
i ui

1 + λui
= 0. (8)

The solution can be obtained through an efficient bisection search algorithm (Wu 2005).
The posterior predictive distribution is highly skewed: hence we used the median instead

ofmean of the posterior predictive distribution for ŷi , denoted bymi, as the auxiliary variable
in a linear regression model
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yi = mi + error. (9)

Let ui denote the predicted value from equations (3) and (4), which was used in the EL
framework to derive an estimate of I (R). We denote the calibrated estimator

ÎMA1 (R) =
∑

i∈s p̂i yi . (10)

The estimator is asymptotically design unbiased, but not necessarily unbiased in the model
sense due to the zero-inflated and overdispersed distribution of the catch data.

We considered a Bayesian model calibration estimator that was approximately model

unbiased as well. Let
{
u(m)
i : i = 1 . . . N ,m = 1, . . . , M

}
denote an approximate posterior

predictive sample from the working model where M is the Monte Carlo sample size. We
estimate Eξ

{
Ep [I (R)]

}
through Monte Carlo integration:

ÎMA2 (R) = 1

M

∑M

m=1
Î (m)
MA1 (R) . (11)

where Î (m)
MA1 (R) denotes the calibrated estimate of I (R) based on mth Monte Carlo sample

from the posterior predictive distribution. Thus the full posterior distribution was used
instead of a point estimate in the calibration process.

2.5. VARIANCE COMPONENTS ESTIMATION USING INLA MODEL

Themodel-assisted approach can incorporate auxiliary information to improve efficiency
of an estimator and can also consider multiple sources of uncertainties in estimating the
variance of the estimator ÎMA2 (R), denoted by Î (R) for brevity of notation in this section.
Let Var denote the total variance of Î (R) incorporating both the model ξ and the design p:

Var
[
Î (R)

]
= Varξ

{
Ep

[
Î (R)

]}
+ Eξ

{
Varp

[
Î (R)

]}

= Varξ
{∑

i≤N
Yi

}
+ Eξ

{
Varp

[
Î (R)

]}
. (12)

The posterior samples from the working model allow estimation of Varξ and Eξ based
on approximate Monte Carlo integration. Given posterior draws, the variance component
due to model: Varξ (

∑
i≤N Yi ) can be estimated from the sample variance of {∑i≤N ŷ(m)

j ,

m = 1. . ., M}, where ŷ(m)
j denotes the predicted value from (3), (4) & (9) based on mth

posterior predictive sample. Letting Î (m)(R) denote the model-assisted estimates based on
posterior drawm, the estimate of sampling variance can be derived as (pp 294, Särndal et al.
1992)

V̂arp
[
Î (m) (R)

]
=

∑n

j=1

[
1 − π

(
xj

)] e2m
(
x j

)

π2
(
x j

)

+
∑n

j=1

∑n

j ′ �= j

π
(
x j , x j ′

)
− π(x j )π

(
x j ′

)

π(xj, x j ′ )

em(x j ′)

π(x j )

em(x j ′ )

π(x j ′)

(13)
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where em(xj) = y j–ŷ
(m)
j , π(x j ) and π(x j , x j ′ ) denote the first and second order inclusion

probabilities. In our application section, the inclusion probabilitieswere calculated assuming
SimpleRandomSamplingwithReplacement (SRSWr, Thompson 2002 pp 71). The variance

component due to the design can be estimated as the average of V̂arp
[
Î (m) (R)

]
. The total

variance can thus be estimated as the sum of the model and design variance components.

3. RESULTS

The estimates of baywide blue crab CPUE (>15 mm carapace width), i.e., ÎMA1(R)

derived from model calibration with the median of the posterior predictive distribution in
Eq.(10), were larger than stratified design-based estimates ÎHT(R) for most years except
1996, 1997 and 1999 (Table 1). In contrast, the estimates ÎMA2(R), calibrated to poste-
rior samples, Eq. (11), were generally similar to those from design-based estimates. The
standard errors (SE) due to sampling for ÎMA2(R), Eq. (13), were smaller than the cor-
responding design-based estimates (Table 1). In contrast, the SEs due to the stochastic
process approximating the blue crab dredging process, Eq. (12), were much larger than
those due to sampling (Table 1). The variance component associated with the stochastic
process dominated the total variance estimates based on the Bayesian calibration. Years
with high abundance index values also had high variance because of the stochastic variance
component (Fig. 2). For example, the 2012 abundance had the highest point estimate, but
when the total SE was considered it was not significantly different from the indices during
2008–2011 and 2013–2014 (Fig. 2).

The design-based estimates of coefficient of variation (CV) were smaller than those
estimates from the Bayesianmodel calibration (Fig. 3). The year-to-year variation of design-
based CV was also smaller than that from the model-assisted approach ( ÎMA2). No linear
trend over time was present for design-based CV estimates (p-Value = 0.90), but a weak,
positive linear trend was apparent for model-assisted CV estimates (p-Value = 0.04).

The spatial patterns of blue crab distribution showed inter-annual variability, but hot
spots of CPUE density were largely consistent across years (Figs. 4 and 5; see supplemental
materials for additional plots). Prediction uncertainties were high in areas of sparse samples
(Fig. 4b, 5b), such as the deeper channels of the main stem of the Bay and lower Potomac
River. High densities occurred in many lower Bay tributaries and eastern shore embayments
(Fig. 4a, 5a).

4. SIMULATION STUDY

4.1. STUDY DESIGN

We performed a simulation study to evaluate the properties of the model calibration
procedure for estimating the population mean and total variance. We focused on the lower
part of the Chesapeake Bay and lower Potomac River instead of the whole Bay (Fig. 1c) to
reduce the computational burden of repeatedly fitting the INLA model over a large study
domain. The subarea selected represents over 60% of the sampling stations within only 15%
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Table 1. Summary of Bay-wide Catch Per Unit Effort estimatesfor blue crabs (> 15 mm carapace width) in the
Chesapeake Bay, U.S.

Year N HT MA1 MA2
Estimate SE Estimate SE Estimate SE1 SE2 SE

1994 1,413 121 7.9 155 4.9 110 22.0 5.7 22.7
1995 1,576 87 6.1 99 3.6 78 14.2 4.4 14.8
1996 1,631 196 12.8 193 7.2 169 29.0 8.7 30.3
1997 1,597 171 8.5 162 4.8 147 22.0 6.0 22.8
1998 1,592 89 5.0 121 2.8 85 9.7 3.7 10.4
1999 1,604 69 5.0 68 2.9 63 7.2 3.4 7.9
2000 1,558 61 3.7 95 2.2 64 12.7 2.8 13.0
2001 1,590 55 4.3 66 2.1 50 9.7 2.6 10.0
2002 1,581 59 4.6 113 2.3 63 8.1 2.9 8.6
2003 1,512 100 9.7 191 5.3 109 20.4 6.2 21.3
2004 1,527 75 5.5 117 3.7 71 13.9 4.1 14.5
2005 1,560 129 6.0 151 3.2 118 21.5 4.2 21.9
2006 1,537 111 5.9 219 2.7 123 28.7 3.8 29.0
2007 1,518 82 5.3 109 3.1 78 14.8 3.8 15.3
2008 1,434 88 5.7 219 2.9 109 21.1 3.9 21.4
2009 1,536 103 6.8 186 5.0 117 18.9 6.1 19.8
2010 1,521 184 8.1 267 4.4 170 26.3 5.8 26.9
2011 1,555 157 8.2 250 3.9 159 24.0 5.6 24.6
2012 1,558 250 13.1 451 6.4 274 77.7 8.9 78.2
2013 1,541 87 8.2 163 4.0 103 21.7 5.1 22.3
2014 1,545 97 6.7 147 3.4 104 28.0 4.3 28.3

HT stratified random design based estimates; MA1 INLA model calibrated estimates ÎMA1 based on the pseudo-
empirical likelihood; MA2 INLA model calibrated estimate ÎMA2 obtained from Markov chain Monte Carlo
samples and pseudo-empirical likelihood; SE1 denotes standard error due to model; SE2 denotes standard error
due to design.

of the grid points. The relatively higher sampling density enabled stable estimation of the
underlying CPUE density. The population index I (R) was simulated for years 2001, 2006
and 2012, representing the years with low, medium and high abundance of blue crabs in the
Chesapeake Bay, respectively.

Let N1 denote the number of grid points in the subarea used in the simulation. Finite
population values yi , i = 1, . . . N1, were generated from the posterior predictive distribution
of the fitted INLA model. Let n denote the number of stations sampled in the dredge survey
in the simulation study domain during the specific year; n grid points were then drawn
by simple random sampling. For each year the process of generating the finite population
values and selecting the sample (three samples per population) was repeated 240 times for a
total of 720 simulated data sets per year. For each sample, the standard Horvitz–Thompson
estimator, the two model-assisted estimators, and their variance estimators were computed.

The calibration procedure was applied assuming the following data generating models
for each sample: (1) a zero-augmented Poisson model with only fixed effects (ZAP); (2) a
zero-augmented negative Binomial model with only fixed effects (ZANB); (3) a ZANBwith
stochastic partial differential equation (SPDE) random effects (ZANB+S); and (4) the zero-
augmented Poisson model with both unstructured and SPDE random effects (ZAP+SOD),
whichwas the “true” data generatingmodel. Only bottomdepth and latitudewere considered
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Figure 2. Time series plot of design and Bayesian calibrated estimates and standard errors (based on sampling
and based on total variance including crab distribution) of Baywide CPUE (106).

Figure 3. Time series plots of design-based and Bayesian calibrated estimates of coefficient of variation (CV) of
blue crab CPUE in Chesapeake Bay, U.S.

as covariates in all four models as most of the study domain is in the lower Bay stratum
(Stratum 3, Fig. 1a). For the ZANB+S model, we also chose from three hyper-priors for the
sill (prior mean 0.5, 1.0 and 2.5) and three hyper-priors for the range (prior precision 0.1,
1.0 and 10), and reported results of ZANB+S from these nine combinations of hyper-priors.

The posterior mean from the fitted INLA model was used as the true CPUE density,
from which we calculated the index I (R) = N−1

1

∑
i≤N1

μ (xi ). We denote I (R) as I
for brevity. Let B = 240 × 3 = 720 denote the total number of Monte Carlo replicates.
The simulated bias and Mean Squared Error (MSE) for the estimate Î were calculated

as Bias
(
Î
)

= B−1 ∑
b≤B

(
Îb − I

)
and MSE

(
Î
)

= B−1 ∑
b≤B

(
Îb − I

)2
, respectively,

where Îb denotes the estimator Î from the bth simulated sample. Themodel variance compo-
nent was calculated by V1 = (BN1)

−1 ∑
b≤B

∑
i≤N1

(Ybi − I )2 where Ybi was the response
variable from the ith grid point and the bth simulation run. The variance component due
to sampling was computed as V2 = V -V1 where V denote the total variance component,
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Figure 4. Maps of Chesapeake Bay during a high abundance year showing a blue crab winter CPUE density
(number/tow/1000 m2) and b inter quartile range based on spatial modeling of winter dredge survey data for
winter of 2011/2012.

V = MSE − bias2. We used V̂1, V̂2 and V̂ to denote the average of the estimated model,
design and total variance components from each simulated sample.

4.2. SIMULATION RESULTS

The bias of the stratified design-based estimate was small, within 0.3% of the simu-
lated population index (see Table 2 Column 1). The model calibration estimates based on
misspecified models (ZAP & ZANB) were unbiased as well. Overall the model calibra-
tion estimators based on spatial and overdispersed models (ZAP+SOD & ZANB+S) were
slightly biased. Specifically, ÎMA1(R) based on a point estimate (median) from ZAP+SOD
or ZANB+S generated slightly biased estimates (2.7–3.3%). The model calibration estimate
ÎMA2(R) based on the posterior samples from ZAP+SOD or ZANB+S had a relative bias
between the design-based estimate and the model calibration ÎMA1(R) estimate (0.4–1.4%).
The biases frommodel calibration ÎMA1(R) to posteriormedian fromZAP+SODwere nega-
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Figure 5. Maps of Chesapeake Bay during a low abundance year showing a blue crab winter CPUE density
(number/tow/1000 m2) and b inter quartile range based on spatial modeling of winter dredge survey data for
winter of 2000/2001.

tive in the simulation results, while those from the real data applicationweremostly positive,
i.e., larger than the design-based estimates.

The calibration estimators based on misspecified models (ZAP & ZANB) generated
similarMSEs as the design-based estimator.Although the spatialmodel calibration estimates
based on ZAP+SOD and ZANB+S were slightly biased, the method generated lower MSEs
than those derived from stratified design-based estimates. The calibration estimator ÎMA2(R)

based on the posterior samples yielded smallerMSEs than the calibration estimator ÎMA1(R)

based on the posteriormedian in all three years. The calibration estimator ÎMA1(R) generated
smaller MSEs than the design-based estimator in 2006 and 2012, but not in 2001. Overall,
the calibration estimator ÎMA2(R) based on posterior samples from the correctly specified
model generated smaller MSE relative to the design-based approach with more than a 15%
reduction in MSE in medium and high abundance scenarios (2006 and 2012).

The estimated model variance components were smaller than the simulated values
(Table 3). Specifically, the underestimation was strongest when assuming a Poisson model
(ZAP). The ZANB calibration generated the smallest negative bias. The two calibrations
based on spatial smoothing (ZANB+S & ZAP+SOD) generated negative bias between ZAP
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Table 2. Simulated bias, mean squared error (MSE) for the average abundance index based on 720 Monte Carlo
samples.

Year Model Relative Bias MSE

HT(%) MA1(%) MA2(%) HT MA1 MA2

2001 ZAP 0.2 0.2 0.2 0.136 0.136 0.136
ZANB 0.2 0.2 0.2 0.136 0.136 0.136
ZANB+S 0.2 −2.9 −0.4 0.136 0.145 0.132
ZAP+SOD −0.1 −3.3 −0.6 0.149 0.158 0.146

2006 ZAP −0.1 −0.1 −0.1 0.304 0.305 0.304
ZANB −0.1 −0.1 −0.1 0.304 0.305 0.304
ZANB+S −0.1 −2.7 −1.2 0.304 0.261 0.253
ZAP+SOD −0.1 −2.8 −1.1 0.299 0.268 0.255

2012 ZAP −0.1 −0.1 −0.1 3.691 3.594 3.628
ZANB −0.1 −0.1 −0.1 3.691 3.641 3.669
ZANB+S −0.1 −2.7 −1.4 3.691 3.169 3.069
ZAP+SOD −0.3 −3.0 −1.4 3.695 3.201 3.131

HT Horvitz-Thompson estimates; MA1 model assisted estimates calibrated to posterior median using pseudo-
empirical likelihood; MA2 model assisted estimates calibrated to posterior samples using pseudo-empirical like-
lihood; ZAP zero-augmented Poisson model; ZANB zero-augmented negative Binomial model; ZANB+S zero-
augmented negative Binomial model with SPDE random effects; ZAP+SOD zero-augmented Poisson model with
over-dispersed and SPDE random effects.

Table 3. Ratio between the simulated variance components for the average abundance index based on 720 Monte
Carlo samples and the estimated variance component using a classical estimator and pseudo-empirical
likelihood calibration.

Year Model Total Model Design

HT MA1 MA2 HT MA HT MA1 MA2

2001 ZAP 0.476 0.768 0.769 0.000 0.415 1.643 1.627 1.637
ZANB 0.476 0.988 0.987 0.000 0.723 1.643 1.640 1.636
ZANB+S 0.476 0.753 0.872 0.000 0.565 1.643 1.255 1.712
ZAP+SOD 0.432 0.712 0.796 0.000 0.568 1.222 1.015 1.251

2006 ZAP 0.615 0.832 0.835 0.000 0.508 1.093 1.083 1.089
ZANB 0.615 1.102 1.103 0.000 1.121 1.093 1.087 1.088
ZANB+S 0.615 0.760 0.957 0.000 0.725 1.093 0.806 1.227
ZAP+SOD 0.629 0.802 0.998 0.000 0.789 1.132 0.819 1.234

2012 ZAP 0.663 0.751 0.778 0.000 0.260 1.230 1.193 1.235
ZANB 0.663 1.065 1.092 0.000 0.933 1.230 1.181 1.230
ZANB+S 0.663 0.711 0.933 0.000 0.639 1.230 0.819 1.326
ZAP+SOD 0.661 0.853 1.041 0.000 0.778 1.228 0.971 1.377

Total columns denote V̂ /V where V and V̂ denote the estimated and simulated total variance component. Model
columns denote V̂1/V1 where V̂1 and V1 denote estimated and simulated model variance component. Design
columns denote V̂2/V2 where V̂2 and V2 denote estimated and simulated design variance components. Other
acronyms are the defined in caption of Table 2.

and ZANB. The model variance components were assumed to be zero in the design-based
framework (Table 3).

The estimated variance components due to sampling were larger than the simulated
values. Calibration based on ZAP or ZANB generated similar estimates as the Horvitz–
Thompson estimator. When calibration was based on spatial and overdispersed models
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(ZAP+SOD or ZANB+S), the estimator ÎMA1(R) based on posterior median generated
smaller estimates than the estimator ÎMA2(R) based on the full posterior sample.

The design-based estimator generated smaller total variance estimates than simulated
values in all three years. Calibration based on ZAP generated negatively biased total vari-
ance estimates. The corresponding estimator based on ZANB was almost unbiased. When
calibration was based on spatial and overdispersed models (ZANB+S or ZAP+SOD), the
variance estimator based on posterior median ÎMA1(R) was more negatively biased than the
estimator ÎMA2(R) based on the full posterior sample. The estimated total variances based
on ÎMA2(R) were close to the simulated values, except in low abundance scenarios (year
2001). The properties of model calibration based on ZANB+S did not change qualitatively
when we altered the parameters from the nine chosen hyper-priors (Supp. Table 1 and 2).

5. DISCUSSION AND CONCLUSION

Weproposed aBayesianmodel calibrationwithin the pseudo-empirical likelihood frame-
work to produce improved estimates of the total variance due to varying catchability and
sampling variability. We extended the geostatistical approach of Jensen and Miller (2005)
with a Bayesian calibration approach. Our mean estimates were similar to that of classical
geostatistical analyses, but the revised standard errors were larger than those in the orig-
inal analysis. Our simulation study indicated that the standard errors from the Bayesian
model calibration approach were approximately unbiased for years 2006 and 2012. Thus,
the Bayesian model calibration framework provides an improved way to estimate total vari-
ance, while maintaining the approximate unbiasedness of the pseudo-empirical likelihood
approach (Chen et al. 2004).

Model calibration is conventionally conducted in a likelihood framework and does not
explicitly consider spatial auto-correlation (Cicchitelli and Montanari 2012; Opsomer et al.
2007). We examined both Bayesian framework and spatial auto-correlation. We found that
model calibration based on a point estimate generated biased estimates. Thus, calibration
based on the entire posterior sample is recommended when analyzing spatial and overdis-
persed survey data. This bias could have resulted from the spatially explicit modeling, which
smooths the neighboring data to improve small area estimation, but likely generates bias in
the global estimation (Brus and DeGruijter 1993). Fishery survey data are commonly zero-
inflated and overdispersed (Liu et al. 2011; Thorson and Ward 2013). The zero-inflated
model is not continuous and thus violates the assumptions for the asymptotic unbiased-
ness of the EL estimator (Wu and Sitter 2001). This violation could lead to the different
direction of biases observed between the real data analyses and simulation studies, where
the smoothed data (i.e., median of the posterior predictive distribution) were used rather
than the original zero-inflated and overdispersed CPUE density in the simulation. Hence,
it is important to allow for overdispersion in the working model because models without
overdispersion could result in substantially biased estimates.

Multi-phase and complex survey designs are often conducted in environmental surveys
and inventory studies (Opsomer et al. 2007). Although, in theory, our approach can be
parameterized for a general design, in practice we are faced with the challenges regarding
estimation of the inclusion probabilities, correction of informative designs (Savitsky and
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Toth 2016), and implementation of the pseudo-empirical likelihood in complex survey con-
texts. Thus, our conclusions only apply to non-informative designs. These complex designs
often collect additional covariates such as age and sex of each individual. In addition, these
surveys are usually conducted over multiple years. This specific spatiotemporal informa-
tion can be used to improve the specificity and accuracy of the estimates. To incorporate
these factors in our approach, however, we would need a spatiotemporal working model
for multivariate and zero-inflated data. Although these models are readily available in the
INLA framework, they require considerable modeling efforts to code and interpret, and are
much less practical for routine analyses than design-based estimates, which are indepen-
dent of the underlying models and can be routinely conducted for many response variables
(Opsomer et al. 2007). Hence, a more user-friendly framework, such as an R package (see
online supplementary code), is needed to alleviate this limitation and make our approach
more generalizable to age- and sex-specific variables collected during a sequential survey.

Our results highlight the need for improvements in the design, implementation, and
analysis of surveys to reduce the variance component due to non-sampling factors. Although
this component of variance is widely recognized (Dick 2004; Wilberg et al. 2010), it is
usually not included in estimating the standard errors associated with indices of abundance
derived from surveys. Routine collection of environmental conditions that are relevant to
the population and catch process would provide important auxiliary information that can
improve index estimation and reduce variance estimates. However, these auxiliary variables
must be available over the entire study area. Geographic Information System and Remote
Sensing technologies could be applied to generate surrogate estimates of these conditions
(e.g., Bauer and Miller 2010). This information could also be used in the design phase to
contextualize the spatial sampling frame (Kumar 2009), and provide improved stratification
variables for the frame.

In summary, the Bayesian calibration framework based on the entire posterior sample
(MA2) provided an approximately unbiased estimator of the total variance. Application to
the WDS data suggested that the approach also maintains the design-based unbiasedness of
the population index estimation. The estimated CVs from Bayesian calibration were larger
than those from design-based estimates and showed an increasing trend between 1994 and
2014. Simulation results suggested this increase could reflect time-varying catchability.
Given that fishery-independent surveys based on probability designs are commonly used to
develop time series of abundance estimates for fishery management, our proposed approach
has the advantage of incorporating design and non-design factors.
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